On the Maximally Clustered Elements of Coxeter Groups

نویسنده

  • R. M. Green
چکیده

We continue the study of the maximally clustered elements for simply laced Coxeter groups which were recently introduced by Losonczy. Such elements include as a special case the freely braided elements of Losonczy and the author, which in turn constitute a superset of the iji-avoiding elements of Fan. Our main result is to classify the MC-finite Coxeter groups, namely those Coxeter groups having finitely many maximally clustered elements. Remarkably, any simply laced Coxeter group having finitely many iji-avoiding elements also turns out to be MC-finite. Preliminary version, draft 2

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deodhar Elements in Kazhdan-Lusztig Theory

The Kazhdan-Lusztig polynomials for finite Weyl groups arise in representation theory as well as the geometry of Schubert varieties. It was proved very soon after their introduction that they have nonnegative integer coefficients, but no simple all positive interpretation for them is known in general. Deodhar has given a framework, which generally involves recursion, to express the Kazhdan-Lusz...

متن کامل

CLASSIFICATION OF COXETER GROUPS WITH FINITELY MANY ELEMENTS OF a-VALUE 2

We consider Lusztig’s a-function on Coxeter groups (in the equal parameter case) and classify all Coxeter groups with finitely many elements of a-value 2 in terms of Coxeter diagrams.

متن کامل

Essays on Coxeter groups Coxeter elements in finite Coxeter groups

A finite Coxeter group possesses a distinguished conjugacy class of Coxeter elements. The literature about these is very large, but it seems to me that there is still room for a better motivated account than what exists. The standard references on thismaterial are [Bourbaki:1968] and [Humphreys:1990], butmy treatment follows [Steinberg:1959] and [Steinberg:1985], from which the clever parts of ...

متن کامل

Characterization of cyclically fully commutative elements in finite and affine Coxeter groups

An element of a Coxeter group is fully commutative if any two of its reduced decompositions are related by a series of transpositions of adjacent commuting generators. An element of a Coxeter group is cyclically fully commutative if any of its cyclic shifts remains fully commutative. These elements were studied by Boothby et al. In particular the authors precisely identified the Coxeter groups ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007